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CHAPTER I
INTRODUCTION

Interest in metal matrix composites (MMC) for high-temperature aerospace

applications has grown in recent years. Because of the high use temperatures envisioned,

proposed applications of MMCs almost always involve both thermal and mechanical cyclic

loading. Consequently, the accurate prediction of the thermornechanical fatigue (TMF) life

of these components is a critical aspect of the design process. Because of the mismatch in

coefficient of thermal expansion between fiber and matrix, internal thermal stresses are

produced during cool-down from the processing temperature and subsequent thermal
cycling. These stresses must be accounted for in the analysis in addition to those produced

by mechanical loading. Prediction of the mechanical behavior and life of a composite

material, therefore, requires a knowledge of the individual components of -:ress or strain in

the fiber and/or matrix as well as the overall applied stresses.

In this investigation, an axisymmetric concentric cylinder geometry was used to

model the unidiredtional composite in which the fiber and matrix were represented by the

core cylinder and outer cylinder, respectively. The concentric cylinder geometry allowed for

a relatively simplified analysis and was adequate for predicting the complex three-

dimensional stress distributions in the fiber and the matrix. The analysis allowed for axial

and radial loading and more than two constituents with bilinear elastic-plastic properties.
The analysis also accounted for thermomechanical loading and temperature dependent

material properties. These aspects were incorporated into a FORTRAN program, FIDEP

(Finite Difference Code for Elastic-Plastic Analysis).

This report summarizes the derivation and application of the concentric cylinder
model to predict the micromechanical stresses in an SCS-6/Ti-24AI- 11 Nb metal matrix

composite. The next chapter summarizes some of the past work done on micromechanical

modeling of composites. Chapter 3 describes the theory for the concentric cylinder model

and summarizes plasticity theory. In Chapter 4 the implementation of the theory to the
computer program, FIDEP, is described and the procedures for using this program are

explained in Chapter 5. Finally some example runs are conducted with this program and

the results are presented.



CHAPTER 2
BACKGROUND

Various ap1,.aches have been adopted in the past to calculate the micromechanical
stresses in the fiber and the matrix due to both thermal and mechanical loading. The most
widespread approach involves use of the finite element method to model a representative
vk,, .me element (RVE) and compute the stress distributions around the fiber. Common
RVE geometries that have been used include either a square or a cylindrical fiber in a square
matrix and a cylindrical fiber in a cylindrical matrix. Different constitutive behaviors
include elastic-plastic behavior [1-31, time-dependent behavior using a classical creep law

141 and unified viscoplastic theories such as the Bodner-Partom model [5), and Bodner-
Partom with backstress 161. However, finite element codes are sually run on mainframe
computers, are time consuming, allow for solution of only one problem at a time, and
require familiarity with finite element analysis and the code. To conduct a parametric study
and to support the design of a large number of experiments on different composite systems,
a more practical approach is desirable.

One simple approach to micromechanical modeling of composites has been to use
average stresses in the constituents. This method has the advantage of being easy to
implement into a code and of easily being extended to analyze laminates. Approaches using
this method include analysis of square fiber in a square matrix and the vanishing fiber
diameter (VFD) model developed by Dvorak and Bahei-E1-Din [71. In the VFD model, the
presence of the fibers is assumed not to influence the transverse stresses. The transverse
properties of a zamina are easily computed using this assumption while the longitudinal
properties are calculated from the rule of mixtures. This analysis can be carried out for an
elastic fiber surrounded by a matrix material having a variety of constitutive relations to
calculate ply properties which, in turn, can be incorporated into lamination theory to analyze
a composite. Such a procedure has been implemented into computer codes such as
AGLPLY 181 which uses thermoplastic matrix behavior and VISCOPLY 191 which
incorporates the Eisenberg creep model to predict average stresses in the constituents and in
a symmetric composite laminate subjected to thermomechanical loading. Aboudi I101
modeled a square fiber in a square matrix subcell using first order displacement expansions.
The unified theory of Bodner and Partom was used to compute inelastic strains. Hopkins

and Chamis (111 and Sun 1 121 conducted strength-of-materials type analyses for a square
fiber in a square matrix cell to obtain expressions for the constituent microstresses. Chamis

2



and Hopkins 1131 modified these expressions based on exneiimental data for uniaxial

lamina and three-dimensional computer simulations of composite behavior. The results

were incorporated into a computer program, METCAN [141, which treats material

nonlinearity at the constituent level where material behavior is modeled using a time-

temperature-stress dependence of constituent properties.

The main drawback to all of these simplified material models is the assumption of

average uniform stress in the representative volume element. This apprc;-ach fails to take into

account the triaxial stresses that arise due to the mismatch of the Poisson's ratio and the

coefficient of thermal expansion of the constituents. A detailed review of these codes and

comparisons of the stresses using these methods and using finite element analysis is given

by Bigelow et al. [ 15].

For a more accurate analytical treatment of the triaxial stresses, the concentric

cylinder model has been used in the literature due to its simple geometry. Thermoelastic

treatment of the axisymmetric concentric cylinder model with multiple rings are given in

references [16, 171. An elastic analysis of a multidirectional coated continuous fiber

composite by means of a three-phase concentric cylinder model is given in reference [18].

Ebert et al. [19] and Hecker et al. [20] were the first to introduce elastic-plastic behavior for

the constituents in which they modeled two concentric cylinders and verified the model with

experiments. Gdoutos et al. used this model to compute thermal expansion coefficients

1211 and stress-strain curves and obtained good agreement with experimental results [221.

However, this approach postulated new stress-strain relations in which the strain increments

were functions of the stress increment, in contrast to the Pranatl-Reuss relations that relate

the strain increments to the current state of stress. This method is a deformation type of

theory and could not be applied to nonproportional loadings and ideally plastic material.

More recently Lee and Allen [231 obtained an analytical solution for elastic-perfectly plastic

fiber and matrix obeying Tresca's yield criterion.

In this investigation an analytical tool was developed to compute the three-

dimensional stress state in a composite using the concentric cylinder model. The analysis

accommodates multiple materials having elastic-plastic behavior with strain hardening. The

PrandtI-Reuss flow rule with the von Mises yield criterion was used. In addition,

temperature-dependent material properties were taken into account. The analysis was

implemented into the computer code FIDEP (Finite Difference Code for Elastic-Plastic

Analysis of Composites) which accounts for thermomechanical cyclic loading.
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CHAPTER 3
THEORY

The derivations of the elastic-plastic concentric cylinder equations are described in
this section. The solution technique for the numerical integration of the Prandtl-Reuss

equations are also summarized.

3.1 Concentric Cylinder Model

A representative volume element of the composite is modeled as concentric cylinders
with the core cylinder representing the fiber and the outer ring representing the matrix (Fig.

3.1). The fiber and matrix radii are denoted as a and b, respectively. The direction of the z-
axis is along the fibers and the cylinders are infinitely long in the axial direction.

Cylindrical coordinates are used in the equations.

The following assumptions are made in the analysis. The temperature distribution is

uniform and is quasi-static. A perfect bond exists between the constituents of the composite

so that there is no slippage or separation of the constituents. The concentric cylinders are in

generalized plane strain and are subjected to axisymmetric loadings and displacements so
that the shear stresses are zero. The constituent properties are isotropic. The fiber is

linearly elastic. The matrix follows a von Mises yield surface and is incompressible in the

plastic region, i.e., hydrostatic stresses do not cause plastic deformation. The plastic

deformation of the matrix is governed by the Prandtl-Reuss flow rule.

The following boundary conditions are imposed:
1) radial stress is Pr at r=b,

2) finite stresses at r=O, and

3) continuous radial displacements and radial stresses at the interface.

3.2 Governing Equations

Equilibrium and compatibility equations in tcylindrical coordinates for an

axisymmetric generalized-plane strain case simplify to 1241:



.... e .....

0g*
be r

"............. ......

hr

Fig. 3.1I Concentric Cylinder Idealization of a Unidirectional Composite and
the Concentric Cylinder Model.
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d o ', + 0, - a g- 0U -- =0, (1)

dr r

dee E,- o= 0 , (2)

dr r

and the stress-strain equations are (25]:

1

1

E= -I(ao - v(Or + a,))+ aT+c E+deE, (3)
E E 

e

= -(a - v(Oa + y6 )) + aT + de+ '
E

where ErP, e0P and czP are the total accumulated plastic strains up to, but not including the

current increment of loading, d~rP, dE0P and dczP are the plastic strain increments due to the

current increment of loading, Er, Eo and ez are the total strains, Or, c0 and az are the stresses,

(x is the secant coefficient of thermal expansion (CTE), v is the Poisson's ratio, E is the

Young's modulus and T is the change in temperature from a reference state in which the

stresses and the strains are assumed to be zero.

Substitution of Eqn. 3 into Eqn. 2 to eliminate total radial and hoop strains yields:

d( _ v (a,+ V(U,.+a.) - aET + E(e.-e- de))+ aT+e +deP)
dr E E

(I+ v) +•deP -ef -deP
Er +0 (4)

This equation together with the equilibrium equation results in two ordinary differential

equations in the two unknowns, Or and 00. The axial strain, EZ, is a constant value across the

cross section because of the imposed generalized plane strain condition.

6



3.3 Computation of the Axial Strain

To compute the axial strain, the stress-strain equation in the axial direction (Eqn. 3)

is multiplied by E r and integrated over the cross section:

b b b b b

ejErdr= Jardr-v(ar, + a8)rdr+JaETrdr+JE(ef +de)rdr. (5)
0 0 0 0 0

For k concentric cylinders, let ai be the outer radius of the ith ring and ao = 0, then the

integral on the left hand side reduces to:

b k E
e, f Erdr= eI '-(a' - a,). (6)

0 iz '1 2

The first integral on the right hand side is evaluated using the global equilibrium equation in

the axial direction; i. e. internal forces are equal to the external applied forces:

b

f a,(2 rr)dr = P,(7rr2 ), (7)
0

where Pz is the applied axial stress.

Rearranging the terms, the equilibrium equation (Eqn. 1) can also be written as [26]:

(a, + c76)r = d (r2 r). (8)
dr

Using Eqn. 8, the second integral on the right hand side of Eqn. 5 becomes:

v - (r r,.) dr= vi ,(a g, r(a,) - cr,_ (a,_1) 9
0 s=1

Expanding and recollectirg terms in Eqn. 9:

b d 2 k-1

Jv-(r a,)dr = X(Vi - V5 i)aIar(a,) + v, ba, (b), (10)
0 dr

7



where Or(b) is the applied radial stress at r=b.

The remaining terms are similarly evaluated assuming constant material properties

and temperature distribution in each cylinder. The axial strain for k concentric cylinders

then becomes:

1 { k-i

--• P,= - 21_Va,(a,)(v, - v,,,)-2vcr,(O)+ oET

Sb (11)
~~E XEJe d~)rdr1

where, Vi is the volume fraction of the ith cylinder, Ec is the axial composite modulus and

etc is the axial coefficient of thermal expansion of the composite defined by:

2 2

k

a=Z, -a,

and
k

c E ,

In the case of two concentric cylinders representing an elastic fiber and an elastic-plastic
matrix, k = 2 and EzP = 0 in the fiber, so that the expression for the axial strain simplifies to:

22 E.Ez= P, -2V, (v - v,,)c,(a)- 2 vP, + acEcT+ b----(e+deP)rdr ,(12)

where ac I •(of EfVf + a•. E. V.)

Ec =VE+ E,,+E.V.,

8



and Vf and Vm are the fiber and matrix volume fractions, respectively, and Pr is the applied

radial stress at r=b. In Eqs. 11 and 12, the axial strain is written in terms of the radial

stresses at the interfaces. The total plastic strains are known from the previous loading

steps and the new plastic strain increments are related to the stresses through the Prandtl-

Reuss flow rule.

Note that if the Poisson's ratio for the cylinders is the same and the applicd radial stress is

zero, the second and third terms vanish leaving the total axial strain as the sum of the

composite elastic strain (ezCc), composite thermal strain (Azthc) and composite plastic strain
(&,,Pc), i. e.:

cc the P Z =_ + 2 E,,'rpJ

If the plastic strain is constant throughout the matrix, then we have for the total strain:

EZ = P + oT + .EV e ,EP E, E z

where EPr is the average matrix plastic strain.

3.4 Finite Difference Formulation

The method of finite differences is used to solve the two ordinary differential

equations [251. The disk radius is divided into N intervals as shown in Fig. 3.2. There are

thus N+1 stations, the first station being at the center of the disk and the last station at the

outer radius. Eqs. I and 4 are written in finite difference form at midpoints of these

intervals as follows:

ri - r,,_ d ar,.E -a0, 1-EI
2-- 2 'rr - r, -r,_

cyr. " - 2 - 2 1 ' "d (a, CFO', I_ r - r _ 9

9
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Sv)1- = 1 t(1+ v, )o.,/E, -(1+ v,_,)a 0 .,_/E,_,
V) - etc.rliy 2 ri - ri_1 /2

In this manner Eqs. 1 and 4 can be written at the midpoints of n stations resulting in 2n

equations;

1-r.j1- - 6, + aiji-i +a- a 8oj == 0
cir + =2... -1, (13)

Gjoi.,_j + DiOr.i + HnU,._j - Fxcro., = Q, - P,

where

ai = (ri - r,-,) / 2r, , bi = E j / E,_j , c, ri I ri_-,

and

D = (1 + v,)( + a),

Fj = (1 + vy)(1 - v1 + aj)

Gi = bi (I + vi-1)(vi_1 - aici),

Hi = bi (I + vi-I )(I1- vi-I - aici),

Qj = ET(oai(I + v,) - aj_(1 + v,-,)) ,

Pi = Ej(P: + e,(vi - vi- 1))

Pi=V(Cp++ p+ p+-P•= vje%+ eg, )- v,_('e.,_ + eo.,)

± , +cE (/a 1 +1) + "(++a, EP; i eP._ - +1a + o,-,_(l( a, - c,)]

where the plastic strains, er+, etc., are the updated plastic strains, i. e. E -=,, + deP etc.

The coefficients at the left hand side are functions of material properties at the ith station.
Only the P* term on the right hand side involves plastic strains. The unknowns are nr,i and
a0,j, i = 1,...,n+l. Using the boundary conditions, ar,n+1 = Pr and o0,1 = Gr,l, the

I1



unknowns reduce to 2n; ar,i, i=l,...,n, and 00,i, i=2,...,n+l. The axial stress distribution, o5,j,

i= 1,...,n+l, is given by Eqn. 3.

Moving the radial stress terms in Eqn. II to the left hand side of Eqn. 13 and letting

the radial stress at the jth interface correspond to the radial stress at node i=Ij, i. e.,
r,, (a,) = o./ , the second expression in Eqs. 13 becomes:

-Giari-l + Diar.j + Hico i-I - Fiuo'i - 2(vi - Vi-()E-1V, - 11+)
- i, (14)

=Q, - E.,.' - E, (y, - v,_,)E:

where

2 k b P= (P2-PE +2 b YE fe rdr). (15)
j=1 0

In the ::se Lf two concentric cylinders, k=2 and j=l. Let INT be defined as the index of the
highest-numbered node in the fiber and INT+1 be the index of the lowest-numbered node

in the matrix. The fiber-matrix interface lies between these two nodes. Then, for all

equations in which i * INT+1, i. e., equations for nodes not adjacent to the interface, ni-ni-I

is zero and the axial strain vanishes from these equations. For the INT+lst equation, Eqn.

14 reduces to:

( 2 Vf E, / E: (v - V.) 2 - Gm+)ar.i),.1

+DrTm+l fNr~t + HImN+, ao~mr + FJNT+1 6OINT+I. (16)

= Qwi- EmPm.+- E.(vm - v)e;

One final step before Eqs. 13 are written in matrix form is to eliminate singular terms for

i=2. Note that (Yr,1 = 50,1. Thus ar,1 and 00,1 terms can be combined in Eqn. 13 to obtain:

(1/c 2 + a2 ) 1 r- 47, 2 + a 2 470, 2 = 0

(H2 -G 2 )ar,Q + D2 ar,2 - F2a9 ,2 = Q2 - P2

In the first equation 1/c2 = rI/r2 = 0. In the second equation, the term H2-G 2 is expanded

and simplified. The final equations for i=2 become:
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a2,.l -- (r.2 + a 2 6,e 2 ' 0

(1 + "'. )(1 - 2v,)b 2 4g,. +D 2 Cr, 2 -F 2 'gO, 2 = Q2 - P2

Hence Eqn. 13 is written in matrix form as:

Ax=B, (17)

where A is a 2n by 2n matrix of constant coefficients, x is the radial and hoop stress vector

of length 2n and B is a vector of length 2n, as shown in Fig. 3.3. In matrices A and B all

the constants are known except the plastic strain increments which are presumed or

computed from the Prandtl-Reuss relations.

3.5 Plasticity Theory

The plastic strains increments are computed using Prandtl-Reuss relations [25]. In

this section two forms of the Prandtl-Reuss equations are summarized; equations relating

plastic strain increments to stresses and equations relating plastic strain increments to

modified total strains.

3.5.1 Prandtl-Reuss Relations

Prandtl and Reuss assumed that the plastic strain increment is proportional to the

instantaneous stress deviation, i. e.:

deP = XS,1  (18)

where Sij is the deviatoric stress tensor and ?L is a nonnegative constant which may vary

throughout the loading history. These equations imply that the plastic strain increments

depend on the current stress state and not on the stress incremt~nt required to reach this
state. To determine k, both sides are squared and multiplied by 2/3 to obtain:

2 .2 L2SjS (19)
3 11 3

Define effective plastic strain increment and effective stress, respectively, as:
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deP = 2d~e and uf :- ýsij (20)

Using these definitions ), is determined from Eqn. 20 as:

3 deP (21)
2 04

and the Prandtl-Reuss relations become:

de, -o 3 deP Sj. (22)

These equations are used together with the von Mises yield criterion. Yielding begins when

the effective stress reaches the yield stress determined from a uniaxial tensile test.

3.5.2 Plastic Strain-Total Strain Plasticity Relations

The above form of the Prandtl-Reuss relations relate the plastic strain increments to

the stresses. Another method to computing the plastic strain increments is to use equations

that relate the plastic strain increments to the modified total strains. These equations will be

more stable with respect to the loading increment size and converge faster for most loading

cases. In this approach the plastic strain increments are computed using modified Prandtl-

Reuss relations derived by Mendelson [25].

Assume a loading path to a given state of stress and total plastic strains CijP and let

the next load step be applied producing additional plastic strains AEijP. The total strains can

be written as:

E= + E+A , (23)

where cjf is the elastic component of the total strain, eijth is the thermal strain, ,ijP is the
accumulated plastic strain up to (but not including) the current increment of load, and AEijP

is the increment of plastic strain due to the increment of load. The previous plastic strains

'ijP are presumed to be known, and AeijP is to be calculated.
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'ile modified total strains are defined as:

cE, -, + AEf. (24)

The deviatoric strains are obtained by subtracting the mean strain from the diagonal

compoe ent of both sides:

e,, = e + AeP. (25)

where Eije is the elastic strain deviator tensor and eij' is the modified strain deviator tensor.

From Hooke's Law and Prandtl-Reuss Eqn. 18:

S.j Ae,(

2G-- 2GA'

where G is the shear moduits. Using this expression and Eqn. 18, Eqn. 25 becomes:

e = (I + 2- )de,,Pe'

2GA

Multiplying both sides of the equation by two thirds itself:

2e ,e, 2 (1 + 2-)2de~deP'.

3 " 3 2GA. "

Define effective modified total strain in a similar fashion to the effective incremental plastic

strain rate to obtain:

e = (I + )deP. '27)
2 GA

The modified Prandtl-Reuss relations then become:

dep
de, =:ee' ,, (28)

e,1
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where cij' are the modified total deviatoric strains, e',ff is the equivalent or effective modified

total strain defined by:

e 3 U e'ed, (29)

and dcp is the equivalent or effective plastic strain increment defined by Eqn. 20. The

modified Prandtl-Reuss equations in expanded form are:

deP
de-= =d (2e'-e';-e;),

S= - (2E' -c' -e'),3e'eff

dep, = 'f- (2e' -e' -e') = -(de + de)

dale = e4 e' dcP= -- e', de= e

Equation 28 is equivalent to the Prandtl-Reuss Eqn. 18, but relate the incremental plastic

strains to modified total strains instead of the stresses.

The relationship between the effective incremental plastic strain and effective

modified total strain is obtained by substituting X from Eqn. 21 in Eqn. 27:

,if = "' + I ,Y" (30)

Let the effective stress from the previous loading step be ,.._i. By expanding the effective

stress in a Taylor series about ad -8_1:

( deP ), _, "

the effective stress is eliminated from Eqn. 30 to obtain:
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d C:ff 3 G ef31)
deS = 3G(31 )

l+ (da.f / )&_,

The effective modified total strain has no physical significance and is purely a mathematical
quantity even in the uniaxial case. In Eqn. 31 a small error in effective modified total strain
or the effective stress will produce the same order-of-magnitude error in the effective plastic
strain increment since the denominator is approximately unity. Equations 28, 29 and 31 are
used simultaneously to determine plastic strain increments at each loading step.

3.6 Solution Technique

Solution of the elastic-plastic concentric cylinder problem requires the solution of 5
equations; the equilibrium and compatibility Eqs. I and 6, and the three Prandtl-Reuss
relations (Eqn. 22 or 28). After elimination of the strains using the constitutive relations
there are 6 unknowns left; Or, YO, Oz, derp, deop, dEzp. The axial stress is eliminated using
Eqn. 11 reducing the number of unknowns to 5. The ordinary differential equations (Eqs. 1
and 6) are solved using the method of central finite differences to obtain a linear system of
equations (Eqn. 13). These simultaneous equations are used in an iterative plasticity
algorithm to solve for the stresses.

There are two iterative algorithms that were considered for this investigation both of
which use forward-Euler integration scheme. The first algorithm uses the Prandtl-Reuss
relations (Fig. 3.4). For an increment of load, a distribution is assumed for the plastic strain
increments. The finite difference equations are then solved for a first elastic approximation

to the stresses and strains. At the same time, the effective plastic strain increment is
calculated (Eqn. 20). From the stress-strain curve the ciirt,,jnding effective stress is
computed. Finally, a new estimate computed for the pli' '- m increments and these
steps are repeated until convergence is obtained. Th" .. -;n is not a very stable
algorithm and may not converge for large load increments.

The second iterative method uses the modified version of the Prandtl-Reuss Eqn. 28
or the plastic strain-total strain relations developed by Mendelson (251. This method is also
called the elastic-predictor radial corrector method. In this algorithm (Fig. 3.5), total strains
are obtained from the stresses from Eqn. 13 with assumed or previously calculated plastic

18



A0e.. < : O..E 14 1p

Figure 3.4 Schematic of the Iterative Technique for Computing Plastic Strains Using the
Prandtl-Reuss Relations.

Figure 3.5 Schematic of the Iterative Technique for Computing Plastic Strains Using the
Modified Prandtl-Reuss Relations.
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strain increment estimates. Modified total strains and effective total strain are obtained from

Eqs. 38 and stress-strain curve using Eqn. 43. The new plastic strain increments are then

determined from Eqn. 40. This process is repeated until convergence of the plastic strains

is obtained. This method converges for even large loading increments and converges very

rapidly.

Both of these algorithms were implemented into the program FIDEP, Finite-

Difference Code for Elastic-Plastic Analysis of Composites. However, since the first

algorithm did not offer any advantage and was unstable except for very small time steps, the

method using the modified plastic-strain total-strain relations was used.
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CHAPTER 4

IMPLEMENTATION IN FIDEP

4.1 Algorithm

The algorithm and the pseudo-code for computing the stresses and plastic strain
increments using the modified strain theory as implemented into the FORTRAN code
FIDEP are shown in Figures 4.1 and 4.2. The procedure for calculating the stresses and

strains is as follows:

1. A stress increment and a temperature increment are applied.
2. The finite difference equations (13) are solved for the new stress state

assuming an elastic deformation, i. e., derP = d0P = dczP = 0.
3. A new yield surface is computed for the present temperature at all stations.
4. Effective stress is compared to this new yield surface for each station.
5. If the effective stress is less than the effective stress at all nodes the plasticity

subroutine is bypassed to go to the next thermal and mechanical load
increments. Otherwise a nonzero plastic strain increment is assumed.

6. The linear system of equations (Eqn. 17), with the assumed plastic strain

increment, are solved for the radial and hoop stresses. The axial stress is
computed from these stresses.

7. The modified total strains and the equivalent total strain are computed from
Eqs. 24 and 29, respectively.

8. The effective incremental plastic strain is computed from Eqn. 20 and the
new incremental plastic strains are computed from the plastic strain-total
strain relations (Eqn. 28).

9. These strains are then compared with the previous plastic strain increments

and if the difference is less than a specified tolerance, go to step 1.
Otherwise the linear system of equations (Eqs. 17) are solved with the new
incremental plastic strains.

10. Steps 6-9 are repeated until convergence of the incremental plastic strains is

obtained.
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4.2 Faster Convergence Scheme

To reduce the number of iterations, a faster convergence scheme was adopted [24].
In this method the three previous plastic strain increment estimates and their differences are
saved and extrapolated to a plastic strain increment that would result in a difference of zero.
In Fig. 4.3, the slope of the line is calculated and the new strain is obtained as -b/a, which is
the y-intercept of the plastic strain vs. the difference graph.
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Figure 4.3 Schematic for the Computation of a New Estimate for the Plastic Strains
Using the Previous Estimates and their Differences.
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CHAPTER 5

PROGRAM

5.1 General Description

FIDEP (Finite-Difference Code for Elastic-Plastic Analysis) is a user-friendly

computer program designed to solve the problem of concentric cylinders subjected to

thermal and mechanical loading. 1iie program is simple in structure and scope since it was

intended to be used as a practical research tool for the determination of stress concentrations

in the matrix around the fiber in unidirectional continuous fiber reinforced metal matrix

composites. The features of the program include:

"• generalized plane strain and axisymmetric geometry,

"• small displacements,

"• isotropic and incompressible fiber and matrix,

"* elastic fiber and time-independent bilinear elastic-plastic matrix

(including perfectly plastic matrix),

"• perfect bonding between the fiber and the matrix,

"• uniform temperature change throughout the composite.

More advanced features such as time-dependent material behavior, multiple

concentric cylinders are absent from the current version of the program since only speedy

prediction of the time-independent nonlinear behavior of a two-phase unidirectional

composite was required at the time.

Operation of FIDEP program is straightforward, requiring the modification of a

loading history file and a material properties data file. All input data are in free format and

some descriptive titles are allowed. The following sections describe the operation of the

program.

5.2 Program Operation

The execution of the program consists of changing two input files and executing the code.

The input files are the loading history file, FDLOAD.DAT, and temperature-dependent

constituent property data file, FDMAT.DAT. Running the code creates four output files:
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FDOUTS, FDOUTE, FDUSP, FDSUM. The first two files consist of the stress and strain
history, respectively, of the matrix at the interface. The output file FDUSP consists of the
stress-strain distribution that exists in the composite at the end of the imposed loading
history. The output file FDSUM consists of a summary of the fiber and matrix stresscs at
the interface at the end of each half-cycle. In the following sections the input and output file
formats are explained in detail.

5.2.1 Input

The input consists of two files: loading file and material properties file. The loading
file data specifies the number of steps, temperature, and applied mechanical stresses and the
second file specifies the temperature dependent mechanical properties for the constituents.

The loading file, FDLOAD, format is listed in Table 5.1. An example loading
history data file for cyclic loading at room temperature after cooldown from processing is

shown in Fig. 5.1.

The material property data specifies the following properties for the matrix and the
fiber: elastic modulus, coefficient of thermal expansion, Poisson's ratio, yield stress and
plastic modulus for each temperature. The material data file, FDMAT, format is listed in
Table 5.2. An example material data file for SCS-6 fiber and Ti-24A1-1lNb matrix material

is shown in Fig. 5.2.

5.2.2 Output

There are four output files: FDOUTS.DAT, FDOUTE.DAT, FDUSP.DAT and
FDSUM.DAT. The first two files contain stresses and strains, respectively, in the matrix at
the fiber/matrix interface at each step increment. FDUSP.DAT contains the stresses and
strains along the radius for the final loading step. FDSUM.DAT contains a summary of
the stresses and strains at the interface in the fiber and the matrix at the end points of each
cycle. The runtime is printed on the screen at the completion of the program. The output
formats are described in the following paragraphs.

FDOUTS.DAT echos the inputs from the loading and material data files at the beginning of
the file. Following the input, the stresses and the mechanical strain in the matrix computed
at the fiber/matrix interface are printed in the following order: computational step, and
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Cooldown and Mechanical Cycling at Room Temperature
Comment line 2
Comment line 3
Comment line 4
3

0 30 60 90 120 0 0 0 0
1010 25 25 25 25 0 0 0 0
0 0 350 35 350 0 0 0 0

Figure 5.1 Example Loading History Input File, FDLOAD.DAT.

TI-24-11 Matrix and SCS-6 Fiber Properties
Comment line 2
2
11
TEMP E(GPa) CTE(1E-6/C) MU SY(MPa) EP(GPa)
20 413 4.72 0.3 1.E6 0.
101 413 4.81 0.3 1.E6 0.
203 413 4.96 0.3 1.E6 0.
299 413 5.09 0.3 1.E6 0.
400 413 5.23 0.3 1.E6 0.
500 413 5.36 0.3 1.E6 0.
598 413 5.44 0.3 1.E6 0.
702 413 5.51 0.3 1.E6 0.
800 413 5.66 0.3 1.E6 0.
900 413 5.73 0.3 1.E6 0.
1010 413 5.75 0.3 1.E6 0.
8
TEMP E(GPa) CTE(1E-6/C) MU SY(MPa) EP(GPa)
20 84.10 11.33 0.3 950.0 0.00
315. 88.40 11.88 0.3 410.0 3.29
482.2 68.26 12.22 0.3 333.3 3.71
649.0 48.09 12.73 0.3 256.5 4.12
704.4 42.08 12.95 0.3 214.1 3.89
760.0 36.07 13.22 0.3 171.8 3.67
885.0 23.66 13.93 0.3 112.8 3.91
1010.0 11.25 14.97 0.3 53.8 4.15
Reference Temperature
1010
Vf b

0.35 1.0

Figure 5.2 Example Material Properties Input File, FDMAT.DAT.
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Table 5.1 Format for the Loading Data File, FDLOAD.DAT.

Card Column Variable Definition

1-4 Comment lines

5 1 NLOAD Number of columns of loading data to be read

6 1-NLOAD NOT Step number

7 1-NLOAD IE Temperatures (0C) corresponding to step NOT

8 1-NLOAD PAT Applied axial stresses (MPa) corresponding to step NOT

Table 5.2 Format for the Material Properties File, FDMAT.DAT.

Card Column Variable Definition

1-2 Comment lines

3 1 NOMAT Number of constituents (1)

4 1 NROW Number of rows of material property data for the first

constituent following header line

5 1 Header line for the properties

6 1 TEMP Temperature (0C)

2 EMAT Modulus (GPa)

3 CTEMAT Coefficient of thermal expansion (E-6/°C) (2)

4 MUMAT Poisson's ratio

5 SYMAT Yield stress (MPa) (3)

6 EPLMAT Plastic modulus (GPa) (4)

7- Repeat cards 4-6 for the matrix

8 Comment line

9 1 TREF Reference temperature (5)

10 Comment line

11 1 VF Fiber volume fraction

2 B Outer radius of matrix (usually 1.0)
Notes: (1) The number of constituents is limited to two at the present.

(2) Secant coefficient of thermal expansion (CTE) is used. The reference temperature for
the secant CTE should be the initial processing temperature.

(3) (4) For the fiber, artificially high value is given for the yield stress and zero value is
given for the plastic modulus since the fiber is assumed to be elastic.

(5) This is the same temperature as the initial processing temperature used in loading
history data file.
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corresponding temperature, applied axial stress, effective stress, radial stress, hoop stress,

axial stress, original yield surface, and axial strain. The column titles are shown below.

Step Temp (Yapp Geff Or 00 Yz Y. S. Ez

The stresses are given in units of MPa, temperature in 'C, and the strain in mm/mm. The

effective stress is defined by:

,fff =---l/ 2[(a,- 6 )2 +a(a, -_ ') 2 + (o, -_ go)2]

which is equivalent to Eqn. 20.

FDOUTE.DAT consists of the strains in the matrix at the fiber/matrix interface in the

following order: computational step, and corresponding temperature, applied axial load,

radial plastic strain, hoop plastic strain, axial plastic strain, radial mechanical strain, hoop

mechanical strain, axial mechanical strain and thermal strain. The column titles are shown

below:

Step Temp Sapp -r £o Ez F-m-e f• Ezne w Cth

FDUSP.DAT consists of the stresses and plastic strains across the cross section of the

composite at the end of loading history in the following order: radius, effective stress, radial

stress, hoop stress, axial stress, radial plastic strain, hoop plastic strain and axial plastic

strain. The column titles are shown below:

Radius cSeff Or Go Uz Erp COp &zp

FDSUM.DAT consists of a summary of the stresses and strains at the interface in the fiber

and matrix at the end points of each loading/unloading cycle in the following order: step

number corresponding to steps in the loading file, FDLOAD, temperature, applied stress,

axial fiber stress, axial matrix stress, effective matrix stress, effective matrix strain and axial

mechanical strain in the matrix. The column titles are shown below:

Step Temp Gapp Ozf (yzm Qyefm eeftm E 22lenl
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5.2.3 Program

The program FIDEP is listed in Appendix A. The program uses a default value of 50

divisions in the cylinders for applying the finite difference method. These finite difference

equations result in a linear system of 100 equations in 100 unknowns represented by the

variable NRA in the program. If a better accuracy is desired NRA can be changed to 200 in

the subroutine SOLVE.

5.2.4 Execution of FIDEP on a VAX/VMS Machine

The program FIDEP can be run interactively or in a batch mode on a VAX-VMS machine

and requires IMSL library of subroutines [271. Before execution, the program is compiled

and linked on a VAX/VMS machine as follows:

"> FOR FIDEP

"> LINK FIDEP+IMSL/LIB

To run FIDEP in real time type

> RUN FIDEP

To run FIDEP on a batch mode a command file has to be created. In this command file the

input and output files can be renamed. An example command file is shown in Fig. 5.3.

This command file is then submitted to the batch using the command

> SUBMIT/NOPRINT filename

After the job has been completed a log file will appear in the main directory.
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$ SET VERIFY
$ ASSIGN/USERYMODE [COKERDU.FIDEP]FDMAT.DAT FOMAT
$ ASSIGN/USER-MODE [COKERDU. FIDEP] FDLQAD.DAT FOLOAD
$ ASSIGN/USERYMODE [COKERDU.FIDEP]FDOUTS.DAT FDOUTS
$ ASSIGN/USER-MODE [COKERDU.FIDEP]FDOUTE.DAT FDOUTE
$ ASSIGN/USER-MODE [COKERDU.FIDEP]FDUSP.DAT FDUSP

$ ASSIGN/USER-MODE [COKERDU.FIDEP]FDSUM.DAT FDSUM
$ RUN [COKERDU.FIDEP]FIDEP3B

Figure 5.3 Example Command File for Running Batch Jobs on a VAX/VMS Machine.
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CHAPTER 6
DEMONSTRATION PROBLEMS

Several problems are solved using FIDEP code to illustrate the capability for
computing micromechanical stresses and to compare with solutions obtained by other

methods. The first case is the comparison of FIDEP solution to the closed form solution

for an elastic problem. The second case is the comparison of FIDEP results with finite

element analysis results for thermal cool-down and thermal cyclic loading. The third case is
an application problem in which the stresses and strains are predicted in a unidirectional

composite subjected to in-phase and out-of-phase thermomechanical fatigue behavior and

the strains are compared with experimental measurements.

6.1 Material Properties

In these computations two-material concentric cylinder model consisting of SCS-6

silicon carbide fiber and Ti-24AI-l lNb matrix is used. The mechanical properties for SCS-
6 and Ti-24A1- 11 Nb are shown in Table 6.1 as a function of temperature. The SCS-6 fiber

is isotropic and elastic with only the coefficient of thermal expansion varying with

temperature. An adequate representation of the Ti-24AI-1 1Nb matrix was attained using a
bilinear elastic-plastic model with temperature dependent elastic and plastic moduli, yield

stress and coefficient of thermal expansion.

6.2 Comparison with an Elastic Solution

An elastic closed form solution for two concentric cylinders and generalized

axisymmetric condition is presented in Appendix 2 [28]. The stresses at the cross-section

obtained by FIDEP and by the closed form solution for AT=-100'C is shown in Fig. 6.1.
In this analysis temperature independent elastic properties were used with the following
properties: Ef = 414 GPa, vf = 0.22, af = 4.7E-6 /1C, Em = 90 GPa, Vm = 0.30, am = 10.7E-

6 /°C, where f denotes the fiber and m denotes the matrix. The fiber volume fraction was

35%. The stresses obtained by the two method are in excellent agreement as shown in Fig.

6.1.

Stresses at the cross-section using the elastic-plastic and the elastic solution is

compared in Fig. 6.2 using the mechanical properties from Table 6.1. The temperature
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Table 6.1 Mechanical Properties for SCS-6 Fiber and Ti-24AI-11Nb Matrix.

SCS-6 Fiber Properties
v = 0.22

E = 414 GPa

Temperature a * (10-6/OC)
(°C)

20 4.70
93 4.81
204 4.97
316 5.12
427 5.26
538 5.38
649 5.50
760 5.60
871 5.70
982 5.78
1010 5.80

Ti-24AI-1 1 Nb Matrix Properties
v = 0.22

Temperature a * (10-6/CC) Elastic Yield Stress Plastic
(OC) Modulus (MPa) Modulus

(GPa) (GPa)

20 12.33 94 604 1.3
93 12.47 92 560 0.9
204 12.78 91 498 0.7
316 13.21 89 447 0.7
427 13.75 79 421 0.4
538 14.42 70 381 0.1
649 15.20 50 357 0
760 16.10 25 252 2.3
871 17.11 18 138 2.6
982 18.25 16 38 1.2
1010 18.55 15 30 1.0

a a is secant coefficient of thermal expansion with a reference temperature of 1010 0 C.
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Figure 6.1 Variation of Elastic Stresses with Radius Obtained by Elastic Closed-Form Solution
and FIDEP for AT = -100°C.
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Figure 6.2 Variation of the Stresses Across the Cross-Section of the CCM After Cool-Down
from Processing Temperature of 1010°C for Elastic and Elastic-Plastic Matrix.
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dependent elastic solution was obtained from FIDEP by making the yield stress artificially

high (L.E6 MPa) for the matrix. The loading input file and a schematic of the loading

history is shown in Fig. 6.3. The yield surface is first reached at the interface and the

matrix near the interface becomes plastic, As the thermal loading increase the plastic zone

spreads outwards to the rest of the matrix and a redistribution of the stresses occur. In the

elastic region, the radial and hoop -resses -hange proportional to 1/"2 and the axial stress

remain uniform. Inside the plastic zone, the radial and hoop stresses remain almost uniform

and the axial stress decreases when the effective stress cannot extend beyond the yield

stress. The remaining load is redistributed to the fiber and the elastic region of the matrix.

6.3 Comparison with Finite Element Method

Two examples are presented and the results from FIDEP are compared with finite

element method (FEM) results obtained from nonlinear finite element code MAGNA [291.

The temperature dependent plasticity subroutines were implemented in MAGNA by J. L,

Kroupa [30]. The geometry and the boundary conditions for the finite element model of an

?xisymmetric concentric cylinder geometry under generalized plane strain condition are

shown in Fig. 6.4 [30]. Contact elements were used to model the fiber-matrix interface,

which allowed the separation of the fiber and matrix when the matrix stresses at the interface

became positive. Isotropic hardening model with a bilinear elastic-plastic stress-strain curve

was used to model the matrix. The fiber was elastic and the volume fraction was 35%. The

material properties listed in Table 6.1 were used for the analysis.

6.3.1 Cool-Down from Processing Temperature

The first comparison problem with FEM was the thermal cool-down associated with

processing the material. The loading input file and a schematic of the loading history is

shown in Figure 6.3. The fiber and matrix are assumed to have zero stresses and strains at

the initial consolidation temperature of 1010°C. As the material cools down, the modulus

changes with temperature and the difference in coefficient of thermal expansion between the

fiber and matrix leads to thermal stresses in the fiber and matrix. The material properties

are those shown in Table 6.1. The output from the program is presented in Appendix C.

The files FDOUTS.DAT and FDUSP.DAT were used in Figs. 6.5-6.8 discussed below.

The three-dimensional stresses computed during the cool-down process are

illustrated in Fig. 6.5. The computed stresses, shown as the dashed lines with symbols in
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Loading File 1
Cool-Down to Room Temperature
From a Processing Temperature of 1010°C
For SCS-6/Ti-24AI- 11Nb Unidirectional Composite
2
0 30
1010 20
0 0

(a)

Temperature (°C)

1010

0 30 60 90 120
Computational Steps

(b)

Figure 6.3 a) Loading Input File, and b) Schematic of the Temperature History for a
Thermal Cool-Down Simulation of SCS-6/Ti-24A1- 11 Nb Unidirectional
Composite.
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Fig. 6.4 Finite Element Model and the Boundary Conditions for an Axisymmetric
Concentric Cylinder Geometry Under Generalized Plane Strain Condition.
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Figure 6.5. Finite Element and FIDEP Predictions for the Stresses at the Interface in
Ti-24AI-1 1Nb Matrix After Cool-Down from Processing Temperature of
1010 0C.

41



0 .0 0 8 . . ., '' , ' , '
Effective Finite Element Method

0.006 "-+. _ _ FIDEP

S0.004 Hoop -

E 0.002
C:

00

S-0.002

-0.004 Radial

-0.006

-0.008 , , , *,, , ,, . , * . .
0 200 400 600 800 1000 1200

Temperature (0C)
Figure 6.6 Finite Element and FIDEP Predictions of the Plastic Strains in Ti-24AI-I 1Nb

Matrix at the Fiber-Matrix Interface After Cool-Down from Processing
Temperature of 1010°C.
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Figure 6.7 Variation of the Stresses Across the Cross-Section of the CCM After
Cool-Down from Processing Temperature of 1010'C.
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After Cool-Down from Processing Temperature of 1010°C.
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the plot, are compared with results for the same problem solved by FEM represented by the

solid lines. The agreement with the finite element results is excellent. The computations

show that the matrix material reaches the yield surface at approximately 600'C and remains

in contact with the yield surface for all lower temperatures. The axial and hoop stresses are

tension and the radial stress is compressive at room temperature and of equal magnitude.

The plastic strains in the matrix at the fiber-matrix interface as a function of
temperature are shown in Fig. 6.6. It can be seen here, as in Fi,. 6.5, that the matrix

deforms elastically until 600'C where the matrix stresses reach yield surface and start

deforming plastically after which measurable plastic strains develop in the three principal

directions. These results are compared with FEM computations and provide excellent

agreement as shown in the figure.

Figures 6.7-6.8 display the stresses and the plastic strains at room temperature

across the cross-section of the composite, respectively. The shaded areas denote the regions
of plastic deformation. Plasticity initiates at the interface and propagates across the matrix
with increased mechanical stress on the matrix. In this particular case, the plastic

deformation has stopped at r/b=0.91 and the rest of the matrix has remained elastic. If a
tensile mechanical load is superimposed at room temperature this will further propagate the
plastic region until all the matrix yields.

6.3.2 Cyclic Thermal Loading

In this example the SCS-6/Ti-24A1- 11 Nb composite is thermally cycled between

processing temperature and room temperatcure as shown in Fig. 6.9. The effective stress

and the radial stress as a function of temperature are plotted and compared with results from
FEM in Fig. 6. 10. FIDEP results are in excellent agreement with finite element results
prior to attaining a temperature of 850'C at the end of the first cycle. The two methods

digress after 850'C because of the changing of the compressive matrix radial stresses at the
interface to tensile at this temperature (Fig. 6. 10). In the case of the tensile radial stress the
finite element model asssumes debonding of the matrix from the fiber to occur whereas the

present model assumes perfect bonding. Thus, the two methods predict different but similar

states after debonding takes place.
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Loading File 1
Cyclic Thermal Loading
Between Room Temperature and Processing Temperature
Temperature: 20 C to 1010 C
4
0 30 90 120
1010 20 1010 20
0 0 0 0

(a)

Temperature (°C)

1010

20
0 30 90 120

Computational Steps

(b)

Figure 6.9 a) Loading Input File, and b) Schematic of the Temperature History for
Thermal Cyclic Loading Simulation of SCS-6/Ii-24A1- II Nb
Unidirectional Composite.
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Figure 6.10 FIDEP and FEM Predictions for the Effective and Radial Stresses
in the Matrix at the Fiber-Matrix Interface for Thermal Loading History
shown in Fig. 6.9.
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6.4 Thermomechanical Fatigue (TMF)

The FIDEP code was used to compute stresses for simulated TMF cycles to
illustrate the micromechanical stresses developed during two typical TMF tests on a SCS-

6/Ti-24AI- 11 Nb composite. The two tests are in-phase (IP) and out-of-phase (OOP) cycles

and are shown schematically in Fig. 6.11. In both tests, the first part of the cycle is the
cool-down from processing temperature discussed previously. This is accomplished under

zero external load conditions. The horizontal axis in Fig. 6.11 represents an arbitrary time

scale and is shown in terms of computational steps. Step 20 represents the room
temperature condition after cool-down. The values shown in the figure correspond to TMF

cycles which were evaluated experimentally and involve a maximum stress of 800 MPa,
R=0. 1 (ratio of minimum to maximum stress) for the OOP and IP cases, and a temperature

range of 150 to 650'C.

The variation of the stresses across the cross section for an OOP cycle is illustrated
in Fig. 6.12. The stresses in both fiber and matrix are shown at the minimum temperature

(maximum load) in (a) while stresses at maximum temperature (minimum load) are
presented in (b). At 1500C, Fig. 6.12(a) shows a large tensile axial stress in the fiber and

tensile axial stresses in the matrix. The fiber stresses are essentially independent of radial

coordinate, but the matrix stresses vary significantly with radius because of the complex
three-dimensional stress state which arises in the concentric cylinder configuration. Matrix

axial stresses are maxim'am at the outer radius and minimum at the fiber-matrix interface.
Hoop stresses, on the other hand, are minimum at the outer radius of the cylinder but do not
vary as much as the axial component. The matrix radial stress is negative at the fiber-matrix

interface and goes to zero at the outer radius because of the imposed stress-free boundary
condition. The stresses developed are the net result of the thermal stresses developed at a

low temperature, the axial component of which is compression in the fiber and tension in the
matrix, and the applied mechanical stresses which are tension in both fiber and matrix in the

axial direction.

At elevated temperature in an OOP TMF cycle, the stress state is generally small as

shown in Fig. 6.12(b). Under this condition, the thermal stresses are small because at high
temperature the stresses are relaxed while the mechanical stresses are small because this is

the condition of minimum load.
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Loading File 1
Cool-Down and In-Phase TMF Loading
Load: 80 MPa to 800 MPa
Temperature: 150 C to 650 C
7
0 30 60 90 120 150 180
1010 20 650 150 650 150 650
0 0 800 80 800 80 800

Loading File 2
Cool-Down and Out-of-Phase TMF Loading
Load: 80 MPa to 800 MPa
Temperature: 150 C to 650 C
7
0 30 60 90 120 150 180
1010 20 650 150 650 150 650
0 0 80 800 80 800 80

(a)

S1000 1 1 1080
. 800 -In-Phase

o 600
. 400-

-o 200-

0~ CpOut-of-PhaseQ-1000 C
3

0 30 6 0 90 12'0 150 80 1 .'_0
Computational Step

(b)

Figure 6.11 a) Loading Input Files, and b) Schematic of the Temperature and Stress
History for Typical In-Phase and Our-of-Phase TMF Cycles.
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Figure 6.12a Variation of Predicted Stresses with Radius for an Out-of-Phase TMF
Cycle at 150'C.
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Figure 6.12b Variation of Predicted Stresses with Radius for an Out-of-Phase TMF Cycle
at 650 0C.
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The axial stresses in the matrix at the fiber-matrix interface are shown in Fig. 6.13.
The steps on the horizontal axis correspond to those of the TMF spectrum schematic in Fig.

6.1 lb. As noted in the discussion of the previous figure, the OOP cycle has tensile thermal
stresses as well as tensile mechanical stresses at minimum temperature which corresponds

to maximum load. This results in a large stress range in the matrix from approximately 450

MPa at minimum temperature (step 60) to approximately -50 MPa at maximum temperature
(step 80). The IP cycle, on the other hand, has a much smaller stress range in the matrix

material. At minimum temperature (step 60), there is a thermal residual stress but little

contribution from applied (minimum) load. The net stress is approximately 275 MPa.
When maximum temperature is reached (step 80), the thermal stress decreases and the

mechanical stress increases. The net result is a stress decrease to approximately 200 MPa.
In summary, the axial stress range in the matrix is large in an OOP cycle and small in an IP

cycle.

In a similar fashion, the axial stress peaks in the fiber are compared for an IP and

OOP TMF cycle in Fig. 6.14. In the fiber, the thermal stresses at low temperature are
compressive because of the low value of a compared to that in the matrix. For an IP cycle,

therefore, the axial stresses range from compressive, due to residual thermal stress at low

temperature (step 60), to tension due to the applied maximum load at high temperature (step

80). In the OOP cycle, the compressive residual stress at low temperature is offset by the

larger mechanical stress due to maximum load, resulting in a net tensile stress of

approximately 1000 MPa at minimum temperature (step 60). Decreasing the load while
increasing the temperature reduces the mechanical stress but also relaxes the compressive

residual stress. Since the mechanical stress range exceeds the thermal stress range for this

set of conditions, the net effect is a reduction in stress to approximately 200 MPa at
maximum temperature (step 80). Thus, an in-phase cycle produces a larger stress range and

higher maximum stress in the fiber than an out-of-phase cycle for the conditions evaluated

here. This is in contrast to the stress range in the matrix which is maximum in the OOP

cycle and smaller in the IP cycle.

The radial and hoop stresses in the matrix at the fiber-matrix interface are plotted in
Fig. 6.15. Since the applied load is in the axial direction, its contribution to hoop and radial

stresses is minimal and arises solely due to Poisson's ratio and 3-D plasticity effects. Thus,

the stresses are mostly due to the thermal cycling, and the IP and OOP cycles produce a

similar stress state. At minimum temperature (step 60), the hoop stresses in the matrix are
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Figure 6.13 Axial Stress Predictions in the Ti-24Al-11Nb Matrix at the Fiber-Matrix
Interface for In-Phase and Out-of-Phase TMF Cyclic Loading.
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Figure 6.14 Axial Stress Peaks Predicted in the SCS-6 Fiber for In-Phase and Out-of-Phase
TMF Cyclic Loading.
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Figure 6.15 Radial and Hoop Stress Predictions in Ti-24AI-11 Nb Matrix at the Fiber-Matrix
Interface for In-Phase and Out-of-Phase TMF Cyclic Loading.
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tensile whereas the radial stresses are compressive. At the maximum temperature (step 80),
both components relax to nearly zero.
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PROGRAM FIDEP3B

C
C

C THIS PROGRAM COMPUTES ELASTIC-PLASTIC STRESSES IN AXISYMMETRIC

C CONCENTRIC CYLINDERS SUBJECTED TO THERMOMECHANICAL CYCLIC

C LOADING.

C

C INPUT FILES:

C FDMAT TEMPERATURE DEPENDENT MATERIAL DATA

C FDLOAD THERMOMECHANICAL CYCLIC LOADING PROFILE

C OUTPUT FILES:

C AT INTERFACE:

C FDOUTS STRESSES AND AXIAL STRAIN AT EACH STEP

C FDOUTE STRAINS AT EACH STEP

C FDSUM STRESSES AND STRAINS CORRESPONDING TO FDLOAD

C AT CROSS-SECTION:

C FDUSP STRESSES AND STRAINS AT THE END OF THE PROGRAM

C AT THE COMPOSITE CROSSSECTION

C

C FINAL REVISION: 13-NOVEMBER-1991

C PROGRAMMER: DEMIRKAN COKER (255-1361)

C SUPERVISOR: NOEL E. ASHBAUGH
r UNIVERSITY OF DAYTON RESEARCH INSTITUTE

C

C

C DEFINITION OF THE VARIABLES USED IN THE PROGRAM

C /MAT1/

C E(201) MODULUS AT RADIUS R

C VMU(201) POISSON'S RATIO AT EACH R

C CTE(201) THERMAL EXPANSION COEFFICIENT AT EACH R

C R(201) RADIUS

C VF FIBER VOlIUMF FRACTION

C EZ EZ = EZSTAR - 2/EC*SR(INT+1)*VF*(VMU(INT)-VMU(INT+1))

C I.E. TOTAL AXIAL STRAIN = EZTOT

C /MAT2/

C EC RULE OF MIXTURES COMPOSITE MODULUS
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C TEMP(5,20) TEMPERATURES AT WHICH PROPERTIES ARE GIVEN FOR

C CONSTITUENTS

C EMAT(5,20) MODULI AT TEMPERATURE FOR THE CONSTITUENTS

C CTEMAT(5,20) CTES AT TEMPERATURE FOR THE CONSTITUENTS

C VMUMAT(5,20) POISSON'S RATIOS AT TEMPERATURE FOR THE CONSTITUENTS

C /MAT3/

C DT(200) CURRENT TEMPERATURE MINUS REFERENCE TEMPERATURE

C T(200) CURRENT TEMPERATURE

C ET(5,200) CONSTITUENT MODULI INTERPOLATED FOR THE CURRENT

C TEMPERATURE

C VMUT(5,200) CONSTITUENT POISSON'S RATIIO .. .." ..

C CTET(5,200) CONSTITUENT CTE INTERPOLATED .. . ..

C PZ(200) APPLIED STRESS CORRESPONDING TO THE CURRENT STEP

C /MAT4/

C TINI,TFIN INITIAL AND FINAL TEMPS READ FROM THE LOADING FILE

C PINI,PFIN INITIAL AND FINAL APPLIED STRESSES READ FROM THE

C LOADING FILE

C TREF REFERENCE TEMPERATURE FOR SECANT CTE = PROCESSING

C TEMPERATURE WHERE THE STRESSES ARE ASSUMED TO BE ZERO

C /MAT5/

C SYMAT(5,20) ORIGINAL YIELD STRESS AT DEFINED TEMPERATURES

C EPLMAT(5,20) PLASTIC MODULUS FOR THE CONSTITUENTS AT DEFINED

C TEMPERATURES

C /MAT6/

C EPLT(5,200) CONSTITUENT PLASTIC MODULI INTERPOLATED FOR THE

C CURRENT TEMP

C SY(5,200) CONSTITUENT ORIGINAL YIELD INTERPOLATED FOR THE

C CURRENT TEMP

C /LIMITS/

C NTOT NUMBER OF NODES ALONG THE RADIUS MINUS 1 = NRA/2.

C NRA NUMBER OF ROWS OF MATRIX A

C INT NODE IN THE FIBER AT THE INTERFACE

C /STRAINS/

C ERTOT(201) TOTAL RADIAL STRAIN

C ETTOT(201) TOTAL HOOP STRAIN

C EZTOT(201) TOTAL AXIAL STRAIN
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C /XX/

C ERP(201),ETP(201),EZP(201)

C OLD PLASTIC STRAINS IN THE PLSTRAIN .NE. NEW PLASTIC

C STRAINS IN SUBROUTINE SOLVE WHICH DOES NOT USE THIS

C COMMON BLOCK

C ERP2(201), ETP2(201), EZP2(201)

C PLASTIC STRAINS USED IN SUBROUTINES PLSTRAIN AND SOLVE

C /LEG/

C JAR TO READ NRA FROM SUBROUTINE SOLVE AT THE BEGINNING

C SR(Z@1) RADIAL STRESS ACROSS THE CROSSSECTION

C ST(201) HOOP STRESS ACROSS THE CROSS-SECTION

C SZ(2ol) AXIAL STRESS ACROSS THE CROSS-SECTION

C NOMAT NUMBER OF MATERIALS - FOR NOW 2

C NROW(S) NUMBER OF ROWS OF TEMPERATURE DEPENDENT DATA

C SE(201) CURRENT YIELD SURFACE - USED IN SUBROUTINE PLSTRAIN

C TE(20) TEMPERATURE READ FROM LOADING FILE

C PAT(20) APPLIED STRESS READ FROM LOADING FILE

C NOT(20) TOTAL NUMBER OF STEPS FOR EACH HALF CYCLE

C

C ****** ****** **** *************' *****

COMMON/MATO/EF,EM,CTEF,CTEM

COMMON/MATi/EC,E(201),VMU(201),CTE(201),R(201),VF,EZ

COMMON/MAT2/TEMP(5,20),EMAT(5,20),CTEMAT(5,20),VMUMAT(5,20)

COMMON/MAT3/DT(200),T(200),ET(5,200),VMUT(5,200),CTET(5,200),PZ(200)

COMMON/MAT4/TINI,TREF,TFIN,PINI,PFIN

COMMON/MAT5/SYMAT(5,20), EPLMAT(5,20)

COMMON/MAT6/EPLT(5,200), SY(5,200)

COMMON/LIMITS/NTOT, NRA, INT

COMMON/STRAINS/ERTOT(201), ETTOT(201), EZTOT(201)

COMMON/LEG/JAR

COMMON/EMECH/ETHERMAL,ERMECH,E- EMECH,EZMECH
REAL ERP2(201),ETP2(201),EZPZ(201)

REAL SR(201), ST(201), SZ(201), SEFF(201), SE(201)

INTEGER NOMAT, NROW(5)

INTEGER NTIME

REAL TE(20), PAT(20), NOT(20)
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COMMON/WORKSP/RWKSP

REAL RWKSP(100000)

CALL IWKIN(100000)

CALL UMACH(-2,12)

OPEN(UNIT=11,FILE='FDNIAT' ,STATUS='OLD')

OPEN(UNIT~=20,FILE='FDLOAD' ,STATUS='OLD')

OPEN(UNIT=1Z, FILE='FDOUTS', STATUS='NEW')

OPEN(UNIT=17, FILE='FDOUTE', STATUS='NEW')

OPEN(UNIT=18, FILE='FDUSP', STATUS='NEW')

OPEN(JNIT=19, FILE~='FDSUM', STATUS='NEW')

NTIME = 0

C - - - Start of timed sequence

XT1=SECNDS(0 .0)

C - - - Read dimension NRA of the matrix A to be solved

JAR = 0

CALL SQLVE(ILK,SR, ST,SZ ,SEFF ,B,ERP2 ,ETP2 ,EZPZ)

JAR = JAR + 1

PRINT *, 'MATRIX DIMENSION IS', NRA

C - - - Read loading from input file FDLQAD.DAT

REAO(20, *)

READ(20,*) !COMMENT LINES IN INPUT DATA

READ(20,*)

READ(20, *)

READ(20,*) NLOAD

READ(20,*) (NOT(I), I=I,NLOAD)

READ(20,*) (TE(I), I=1,NLOAD)

READ(ZO,*) (PAT(I), I=1,NLOAD)
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WRITE(12,*) 'NO OF DATA ', NLOAD

WRITE(12,*) 'STEPS', (NOT(I), I=1,NLOAD)

WRITE(12,*) 'TEMP ', (TE(I), I=1,NLOAD)

WRITE(12,*) 'STRESS ', (PAT(I), I=1,NLOAD)

TREF =TE(1)

C - - - Read temperature dependent material properties

CALL READMAT(NOMAT,NROW)

C - - - Define nodes in the concentric cylinder model

CALL GEOMETRY(VF,B,A,DR,R)

C - - - Print header lines

CALL HEADER(NTIME,TE,PAT,NOT)

CLQSE(11)

CLQSE(20)

C - - - Start cyclic loading

DO 995 ICYC = 1, NLOAD-1

NSTEPS = NOT(ICYC+1)-NOT(ICYC)

TINI = TE(ICYC)

TFIN = TE(ICYC+1)

PINI = PAT(ICYC)*l.OE6

PFIN = PAT(ICYC+1)*1.0E6

CALL LOADING(NSTEPS ,NOMAT)

DO 990 ILK=2,NSTEPS+1

NTIME = NTIME + 1
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C - - - Define properties at each node, i. e. translate properties at

C temperature for material 1 and 2 into node properties; E,alpha,nu

C In addition, define shorthands for moduli, Ef, Em, Ec.

CALL PROPERTIES(ILK)

C - - - Calculate stresses with old plastic strains (dep-new = 0)

C i.e. assume loading increment to be elastic only

CALL SOLVE(ILK,SR,ST,SZ,SEFF,B,ERP2,ETPZ,EZP2)

C - - - Iterate to find plastic strain increments

CALL PLSTRAIN(ILK,SR,ST,SZ,SEFF,B,ERPZ,ETP2,EZPZ,SE)

C - - - Output stresses and strains

CALL OUTS(SEFF,SR,ST,SZ,ILK,NTIME,ERP2,ETP2,EZP2)

990 CONTINUE

CALL OUTSUM(INT,SZ,SR,ST,SEFF,NTIME,TFIN,PFIN)

995 CONTINUE

C - - - Output stresses and strains at the cross-section

CALL OUTUSP(SEFF,SR,ST,SZ,ERP2,ETP2,EZP2,NTOT)

C - - - Print out runtime of the code

CALL REALTIME(NRA,NTIME,XT1)

99 FORMAT(2X,I4,1X,F7.1,1X,F8.1,1X,5(F8.1,1X),E1O.3)

STOP

END
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C ---------------------

C SUBROUTINES
C - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -.

C - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

C READ INPUT MATERIAL PROPERTIES FOR THE FIBER AND THE MATRIX

C ---------------------------------------------------------------------

SUBROUTINE READMAT(NOMAT,NROW)

COMMON/MATZ/TEMP(5,ZO),EMAT(5,20),CTEMAT(5,20),VMUMAT(5,20)

COMMON/MAT4/TINI,TREF,TFIN,PINI,PFIN

COMMON/MAT5/SYMAT(5,20), EPLMAT(5,20)

REAL TEMP,EMAT,CTEMAT,VMUMAT,TREF,TFIN,TREF2(5)

INTEGER NOMAT,NROW(5)

C - - - Read temperature dependent material data

READ(11,*)

READ(11,*)

READ(11,*)NOMAT

DO 144 I=1,NOMAT

READ(11,*) NROW(I)

READ(11,*)

DO 144 J=1,NROW(I)

READ(11,*) TEMP(I,J),EMAT(I,J),CTEMAT(I,J),VMUMAT(I,J),

+ SYMAT(I,J), EPLMAT(I,J)

WRITE(12,99)I,J,TEMP(I,J),EMAT(I,J),CTEMAT(I,J),VMUMAT(I,J),

+ SYMAT(I,J), EPLMAT(I,J)

144 CONTINUE

99 FORMAT(2(I5),2X,4(F8.2),E9.2,F8.2)

READ(11,*)

READ(11,*)TREF

RETURN

END
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C COMPUTE RADIUS OF NODES AND INTERFACE NODE IN THE CCM

C--------------------------------------------------------------------

SUBROUTINE GEOMETRY(VF,B,A,DR,R)

COMMON/LIMITS/NTOT, NRA, INT

REAL VF, B, A, DR, R(201)

INTEGER NTOT, INT

READ(11,*)

READ(11,*,END=44) VF, B

WRITE(12,*)'VF= ', VF

GOTO 45

44 VF = 0.35

B = 1.

45 A = SQRT(VF)/B

PRINT *, 'VF, B ', VF, B

NTOT = NRA/2.0

C - - - Nodes in Fiber

R(1) = 0.02E-10

R(2) = A/2

R(3) = A - A/100.0

C - - - Nodes in Matrix

R(4) = A + A/100.0

DR = (B-A)/(NTOT-3)

DO 10 I=S,NTOT+1

R(I) = A + DR*(I-4)

10 CONTINUE

INT = 3 !A/DR + 1

DO I=1,NTOT+1

PRINT *, I, R(I)

END DO

PRINT *, ' rf, rm, A ', R(INT), R(INT+1),A

C R(INT+l) = A

RETURN

END
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C - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - -

C COMPUTE INCREMENTAL LOADING AND INTERMEDIATE PROPERTIES

C--------------------------------------------------------------------

SUBROUTINE LOADING(NSTEPS ,NOMAT)

COMMON/MAT3/DT(200) ,T(200), ET(5 , 20) ,VMUT(5 ,200) ,CTET-(5,200) ,PZ(200)

COMMON/MAT4/TINI ,TREF , FIN ,PINI ,PFIN

COMMON/MAT2/TEMP(5 ,20) ,EMAT(5 ,20), CTEMAT(5, 20) ,VMUMAT(5 ,20)

COMMON/MAT5/SYMAT(5 ,20), EPLMAT(5 ,20)

COMMON/MATh/EPLT(5 ,200), SY(5, 200)

DO 110 I=1,NSTEPS+l

DTII = (I-1.)*(TFIN-TREF)/NSTEPS/1.

DTEMP = (I-1.)*(TFIN-TINI)/NSTEPS/1.

T(I) =TINI + DTEMP

DPZ = (I-1.)*(PFIN-PINI)/NSTEPS/1.

PZ(I) = PINI + DPZ

DT(I) = T(I) - TREF

TT = T(I)

C - - - Compute the material properties at each loading temiperature

DO K=1,NOMAT

J= 1

DO WHILE(TT.GT.TEMP(K,J))

3=3+1

END DO

TFACTOR=(TT-TEMP(K,J-1))/(TEMP(K,J).TEMP(K,3-1))

CALL INTERP(I,K,J,TFACTOR,ET,EMAT)

CALL INTERP(I ,K,J ,TFACTOR,CTET,CTEMAT)

CALL INTERP(I ,K,J,TFACTOR,VMUT,VMUMAT)

CALL INTERP(I,K,J,TFACTOR,SY,SYMAT)

CALL INTERP(I,K,J ,TFACTOR,EPLT,EPLMAT)

END DO
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11.0 CONTINUE

DO 120 K=1,NOMAT

DO 120 I=I,NSTEPS+1

SY(K,I) = SY(K,I)*1.E6

EPLT(K,I) = EPLT(K,I)*I.E9

120 CONTINUE

RETURN

END

C ---------------------------------------------------------------------

C INTERPOLATION SCHEME USED IN DETERMINING INTERMEDIATE PROPERTIES

C ----------------------------------------------------------------------

SUBROUTINE INTERP(I,K,J,TFACTOR,VALT,VALMAT)

REAL VALT(5,200), VALMAT(5,20), TFACTOR

INTEGER I, K, J

VALT(K,I)=VALMAT(K,3-1)+(VALMAT(K,J)-VALMAT(K,3-1))*TFACTOR

RETURN

END

C ---------------------------------------------------------------------

C ASSIGN PROPERTIES TO EACH NODE

C ---------------------------------------------------------------------

SUBROUTINE PROPERTIES(ILK)

COMMON/MATO/EF,EM,CTEF,CTEM

COMMON/MATI/EC,E(201),VMU(201),CTE(201),R(201),VF,EZ

COMMON/MAT3/DT(200),T(200),ET(5,200),VMUT(5,200),CTET(5,200),PZ(200)

COMMON/MAT6/EPLT(5,200), SY(5,200)

COMMON/LIMITS/NTOT, NRA, INT

EF = ET(1,ILK)*1.E9 !414E9

EM = ET(2,ILK)*1.E9 !113.7E9
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CTEF = CTET(1,ILK)*1.0E-6

CTEM = CTET(2,ILK)*1.0E-6

DO 21 I=1,INT

E(I) = ET(1,ILK)*1.E9 !414.E9

VMU(I) = VMUT(1,ILK) !0.3

CTE(I) =CTET(1,ILK)*1.E-6 !4.7E-6

21 CONTINUE

DO 22 I=INT+1,NTOT+1

E(I) = ET(2,ILK)*l.E9 !113.7E9

VMU(I) = VMUT(2,ILK) !0.22

CTE(I) = CTET(2,ILK)*1.E-6 !9.44E-6

22 CONTINUE

EC = EF*VF + EM*(1=VF)

RETURN

END
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C -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

C COMPUfE STRESSES GIVEN A PLASTIC STRAIN INCREMENT

C--------------------------------------------------------------------

SUBROUTINE SOLVE(ILK,SR,ST,SZ ,SEFF ,B,ERP,ETP,EZP)

PARAMETER(NRA=100, LDA~=NRA, IPATH=1)

COMMON/LIMITS/NTOT,NNRA, TNT

COMMON/MATO/EF ,EM, (TEF ,CTEM

COMMON/MATi/EC ,E(201) ,VMU(201) ,CTE(201) ,R(201) ,VF ,EZ

COMMON/MAT3/DT(200) ,T(200) ,ET(5,200) ,VMUT(5,200) ,CTET(5 ,200) ,PZ(200)

COMMON/MAT6/EPLT(5 ,200), SY(5 ,200)

REAL ERP(201), ETP(201), EZP(Z01)

COMMON/STRAINS/ERTOT(201), ETTQT(201), EZTOT(201)

COMMON/LEG/JAR

REAL AA(201), BB(201), CC(201), DD(201), FF(201), GG(201), HH(201)

REAL QQ(201), PLAS(201), PP(201)

REAL AMAT(NRA,NRA), BMAT(NRA), XSOL(NRA)

REAL SR(201), ST(201), SZ(201), SEFF(201)

NNRA = NRA

IF (JAR.EQ.0)THEN

RETURN

END IF

C -- - Calculate Ez without the radial stress component at the interface

TEGRAL = 0.

DO I=IN1-.1,NTOT+1

END DO

EZSTAR =PZ(ILK)/EC + DT(ILK)*

+ (CTEF*EF*VF+CTEM*EM*(1-VF))/EC

EZSTAR =EZSTAR + 2*TEGRAL*EM/B**2/EC

C - - - Compute coefficients for the FD equations to use in the A-matrix

72



DO 30 I=2,NTOT÷1

AA(I) = (R(I)-R(I-1))/Z/R(I)

B8(I) =E(I)/E(I-1)

CC(I) =R(I)/R(I-1)

FF(I) = (1+VMU(I))*(1VMU(I)+AA(I))

GG(I) = (1+VMU(I-1))*(VMU(I-1)-AA(I)*CC(I))*BB(I)

HH(I) = (1VUI1)(-M(-)A()C()*BI

QQ(I) = E()D(L)(T()C+M(I)CEI1*lVUI1)

PLAS(I) = AA(I)*(ERP(I)+CC(I)*ERP(I-1)) - ETP(I)*(1+AA(I))

+ + ETP(f-1)*(1-AA(I)*CC(I)) + VMU(I)*(ERP(I)+ETP(I))

+ - VMU(I-1)*(ERP(I-1)+ETP(I-1))

PLAS(I) = E(I)*PLAS(I)

PP(I) =PLAS(I) + E(I)*EZSTAR*(VMU(I)-VMU(I-1))

30 CONTINUE

C - - - Initialize A and B

DO 51 I=1,2*NTOT

DO 52 J-1,2*NTOT

AMAT(I,J)= 0.0

52 CONTINUE

BMAT(I) = 0.0

51 CONTINUE

C - - - Construct the A-matrix and B-matrix

AMAT(1,1) =AA(Z)

AMAT(NTQT+l,l) = (1 + VMU(1))*(l -2*VMU(1))*BB(2)

DO 55 I=2,NTOT

AMAT(I-1,I) = -1.0 !upper left

AMAT(II) = 1/CC(I+l)

AMAT(NTOT+I-1,I) =DD(I) !lower teft

AMAT(NTOT+I,I) = -GG(I+l)

AMAT(I,NTOT+I-1) = AA(I+1) !upper right

ANIAT(NTOT÷I,NTOT+I-1) = HH(I±1) !lower right
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55 CONTINUE

C - - - This is the vmti correction at the interface from the axial strain

AMAT(NTOI+INT,INT) = 2*EM/EC*VF*(VMU(INT)-VMU(INT+1))'J**2 -GG(INT+1)

D0 66 I=1,NTOI

AMAT(I,NTOT+I) = AA(I+l) !upvci right

AMAT(NTOT+I,NTOT+I) = -FF(I±1) !lower right

BMAT(I) = 0.

BMAT(NTOT+I) = QQ(I+l) - PP(I+1)

66 CONTINUE

C - - - Solve for the radial and hoop stresses

CALL LSARG(NRA,AMAT,LDABMAT,IPATH,XSOL)

C - - - Enforce boundary conditions

SR(NTOT+1) =0.0

SI(l) = XSOL(1) XSOL(1) = SR(1)

--- Extract radial and hoop stresses from XSOL

DO 86 I=1,NTOT

SR(I) = XSOL(I)

SI(I+1) ý:XSOL(N1OT+[)

8f CONTINUE

E/- F/<JAR 2I/F %SR(fNTI±)*VFI(VMU(INT)-VMU(INT+1))

(cmiipute cixuin rind effective stresses

101 1) 1,N(I)EI/() -CEI)()DTI



SQUARE = (SR(I)-ST(I))**2+(SR(I)-SZ(I))**2+(ST(l)-SZ(I))**2

SEFF(I) = SQRT((SQUARE)/2.)

101 CONTINUE

C - - - Compute total strains

DO I=1,NTOT+1

END DO

RETURN

END

C--------------------------------------------------------------------

C SUBROUTINE TO COMPUTE PLASTIC STRAIN INCREMENTS USING MENDELSON'S

C ALGORITHM

C--------------------------------------------------------------------

SUBROUTINE PLSTRAIN(ILK,SR,ST,SZ,SEFF,B,ERP2,ETP2,EZP2,SE)

COMMON/LIMITS/NTOT,NNRA, INT

COMMON/MATO/EF ,EM, CTEF ,CTEM

COMMON/MATi/EC ,E(201) ,VMU(201) ,CTE(201) ,R(201) ,VF ,EZ

COMMON/MAT3/DT(200) ,T(200) ,ET(5 ,200) ,VMUT(5 ,200) ,CTET(5 ,200) ,PZ(200)

COMMON/MAT6/EPLT(5 ,200), SY(5 ,200)

COMMON/LEG/JAR

COMMON/STRAINS/ERTOT(201), ETTO1i(201), EZIOI(201)

COMMON/XX/ERP(201), ETP(201), EZP(201)

COMMON/XXFEB6/DRTEST1(201), DRTEST2(201), DRTEST3(201)

COMMON/XXFEB6/DTTEST1(201), DTTEST2(201), DTTEST3(201),EPEFF(201)

REAL SR(201), ST(201), SZ(201), SEFF(201)

REAL SE(201)

REAL DERP(20l), DEIP(201), DEZP(2Ol), DEP(201)

REAL ERP2(201), FTP2(201), EZP2(201)

REAL ERPCHECK(201), FIP0fI[CK(201)



REAL YLDFLG(201)

REAL DELTAR1(201),DELTAR2(201)

REAL DELTAT1(201),DELTAT2(201)

REAL ARCOEF(201),BRCOEF(201),ATCOEF(201),BTCOEF(201)

INTEGER K, J, JJJ

C DT: Current temperature minus the reference temperature

ITER = 0

IZMIR = 0

C - - - Calculate new yield surface after strain-hardening

DO I = INT+1, NTOT+1

XM = EPLT(2,ILK)/E(I)

DSDE = XM*E(I)/(1.-XM)

SE(I) = DSDE*EPEFF(I) , SY(2,ILK)

END DO

C - - - Check if the new stresses are greater than new Y.S.

8 DO I = INT+l, NTOT+1

IF(SEFF(I).GT.SE(I)) GO TO 9

END DO

RETURN

C - - - If there is yielding of some nodes, start iterating for dep

9 DO 55 KZ=1,12

DO 10 1 = INT+l, NTOT+1

COlculate new yield surface due to plas strain incr. at node i

XM = EPLT(2,ILK)/E(I)

DSDI - XM*E(I)/(1,-XM)

SE(1) - DSDE*EPEFF(I) + SY(2,ILK)
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F = SEFF(I) - SE(I)

C - - - Check stress state for yielding at node i

IF(F.GT.0) GOTO 50

YLDFLG(I) = 0.

GOTO 10

50 YLDFLG(I) = 2.0

C - - - Calculate modified total strains

ERMTS =ERTOT(I) - ERP(I) !erp is w/o derp

ETMTS = ETTOT(I) - ETP(I) !W/O DETP(I)

EZP(I) = -ERP(I) - ETP(I)

EZMTS = EZTOT(I) - EZP(I) !W/O DEZP(I)

SS1 =ERMTS - ETMTS

SS2 =EZMTS - ETMTS

SS3 =ERMTS - EZMTS

C - - - Calculate equivalent (effective) modified total strain (MTS)

EET = SQRT(SS1**2+SS2**2+SS3**2)*SQRT(2.)/3.

C - - - Relationship between dep or PSI and eff MTS

DENOMDEP = 1. + 2./3.*(1+VMU(I))/E(I)*DSDE

DEP(I) = FET - 2./3.*(1+VMU(I))/E(I)*SE(I)

DEP(I) = DEP(I)/DENOMDEP

C - - - Calculate new PSIs using modified Prandtl-Reuss equations

DERP(I) = DEP(I)/3./EET*(2*ERMTS-ETMTS-EZMTS)

DETP(I) = DEP(I)/3./EET*(2*ETMTS-ERMTS-EZMTS)

DEZ2 = DEP(I)/3./EET*(2*EZMTS-EThTS-ERMTS)

DEZP(I) = -(DERP(I) + DETP(I)) !Compar'e dezp & dez2

ERP2(I) = ERP(I) + DERP(I)
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ETP2(I) = ETP(I) + DETP(I)

EZP2(I) = -ERP2(I) - ETP2(I)

FZP2TFST = EZP(I) + DEZP(I)

10 CONTINUE

C - - - Solve O.D.E.s with new plastic strain increments

11 CALL SOLVE(ILK,SR,ST,SZ,SEFF,B,ERP2,ETP2,EZP2)

C - - - Save old plastic strains from the three previous iterations

DO I = INT÷1, NTOT+1

DRTEST1(I) = DRTESTZ(I)

DRTEST2(I) = DRTEST3(I)

DRTEST3(I) = ERP2(I)

DTTEST1(I) = DTTEST2(I)

DTTEST2(I) = DTTEST3(I)

DTTEST3(I) = ETP2(I)

END DO

C --- Faster convergence scheme extrapolates the difference between

C previous plastic strain increments to zero.

IZMIR = IZMIR + 1

IF(IZMIR.EQ.4)THEN

IZMIR = 0

DO 22 1 = INT-e1, NTOT+1

PRODTEST = DRTESTl(I)*DRTEST2(I)*DRTEST3(I)

DRORTEST = ABS(DRTEST2(I)-DRTEST3(I))

DTDTTEST = ABS(DTTEST2(I)-DTTEST3(I))

IF(PRODTEST.NE.0.000000.AND.DRDRTEST.GT.lE-8.AND.

+ DTDTTEST.GT. 1.E-10)THEN

DELTAR1(I) = DRTEST2(I) - DRTEST1(I)

DELTAR2(I) = DRTEST3(I) - DRTEST2(I)

ARCOEF(I) = (DELTAR1(I)-DELTAR2(I))/(DRTEST2(I)-DRTEST3(I))

BRCOEF(I) = DELTAR2(I) -ARCOEF(I)*DRTEST3(I)
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if(citcoef(i) .gt.le-14)then

ERP2(I) = -BRCOEF(I)/ARCQEF(I)

end if

DELTAT1(I) =DTTEST2(I) - DTTEST1(I)

DELTATZ(I) DTTEST3(I) - DTTEST2(I)

ATCOEF(I) = (DELTAT1(I)-DELTAT2(I))/(DTTEST2(I)-DTTEST3(I))

BTCOEF(I) = DELTAT2(I) -ATCOEF(I)*DTTEST3(I)

if(atcoef(i).gt. le-14)then

ETP2(I) =-BTCOEF(I)/ATCOEF(I)

end if

EZP2(I) =-ERP2(I) - ETPZ(I)

END IF

22 CONTINUE

GOTO 11

END IF

55 CONTINUE

DO M = INT+1, NTOT+1

ERP(M) = ERP2(M)

ETP(M) = ETPZ(M)

EZP(M) = -ERP(M) -ETP(M)

EPEFF(M) = EPEFF(M) + DEP(M)

END DO

RETURN

END
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C -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

C HEADER LINES FOR THE OUTPUT

C--------------------------------------------------------------------

SUBROUTINE HEADER(NTIME ,TE,PAT,NOT)

REAL TE(20), PAT(20), NOT(20)

WRITE(12, 750)

WRITE(19 ,751)

WRITE(17,752)

WRITE(18 ,753)

750 FORMAT(1X,'STEP ','TEMP ','APPSTRESS ','SEFF ''SR ' ST '

$ ' SZ ',' SY(MPA) ', 'EZMECH')

751 FORMAT(1X,'STEP ,'TEMP ','APPSTRESS ','SZF ' SZM ' SEFFM '

$ 'EEFFM ',' EZMECH ')

75Z FORMAT(1X,'STEP ','TEMP ','ERPM ','ETPM ',' EZPM ',' ERMECH u

$ ' ETMECH ',' EZMECH ', 'ETHERMAL')

753 FORMAT(1X,'R/B ','SEFF ',' SR ',' ST '

$ ' SZ ',' ERP ', vETP ', 'EZP')

RETURN

END

C--------------------------------------------------------------------

C PRINT STRESS OUTPUT IN FDOUTS.DAT AND STRAIN OUTPUT IN FDOUTE.DAT

C--------------------------------------------------------------------

SUBROUTINE OUTS(SEFF,SR,ST,SZ,ILK,NTIME,ERP2,ETPZ,EZP2)

COMMON/MA TO/EF ,EM, CTEF ,CTEM

COMMON/MATi/EC ,E(ZO1) ,VMU(201) ,CTE(Z01) ,R(Z01) ,VF ,EZ

COMMON/MAT3/DT(200) ,T(200) ,ET(5 ,200) ,VMUT(5 ,200), CTET( , 200), P7(200)

COMMON/MA T6/EPL T(5 ,200), SY(5 ,200)

COMMON/LIMITS/NTOT, NRA, INT

COMMON/STRAINS/ERTOT(Z0l), ETTOT(201), EZTOT(201)

COMMON/EMECH/ETHERMAL ,ERMECH,ETMECH,EZMECH

REAL ERP2(201) ,ETP2(201),EZP2(201)
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REAL SR(201), ST(201), SZ(201), SEFF(201)

ICYC = ICYC + 1

IF(ICYC .EQ. 1)THEN

WRITE(12,99) NTIME, TE(1), PAT(1)/1.E6, SEFF(1)/1.F6,

+ SR(1)/1.E6, ST(1)/1.E6, SZ(1)/1.E6, SY(2,1)/1.E6,EZMECII

END IF

SS1 = SEFF(INT+1)/1.E6

SSZ = SR(INT+1)/1.E6

SS3 = ST(INT+1)/1.E6

SS4 = SZ(INT+1)/1.E6

SS5 =SY(2,ILK)/1.E6

ETI'ERMAL = CTE(INT+1)*DT(ILK)

ERMECH = ERTOT(INT+1) - ETHERMAL

ETMECH = ETTOT(INT+1) - ETHERMAL

EZMECH = EZTOT(INT+1) - ETHERMAL

WRITE(12,99) NTIME, T(ILK), PZ(ILK)/1.E6, SS1, SS2, SS3, SS4,

+ SS5, EZMECH

L =INT+1

WRITE(17,101) NTIME, T(ILK), ERP2(L), ETP2(L), EZP2(L)

+ , ERMECH, ETMECH, EZMECH, ETHERMAL

99 FORMAT(2X,I4,1X,F7.1,1X,F8.1,1X,5(F8.1,lX),E1O.3)

101 FORMAT(2X,IS,2X,F7.2,7(2X,E11.5))

RETURN

END
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C -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

C PRINT SUMMARIZED OUTPUT IN FDSUM.DAT

C ------------------------- ------------------------------------------

SUBROUTINE OUTSUM(INT,SZ,SR,ST,SEFF,NTIME,TFIN,PFIN)

COMMQN/STRAINS/ERTOT(201), ETTOT(201), EZTOT(201)

COMMON/EMECH/ETHERMAL ,ERMECH, ETMECH ,EZMECH

REAL SR(201), ST(Z01), SZ(201), SEFF(ZOI)

XSZF = SZ(INT)/1.E6

XSZM = SZ(INT+1)/l.E6

XSEFFM = SEFF(TNT-I-)/l.E6

IZ =INT+1

SQUARE = (ERTOT(IZ)-ETTOT(IZ))**2 + (ERTOT(IZ)-EZTOT(IZ))**2+

+ (ETTOT(IZ)-EZTOT(IZ))**2

XEEFFM = SQRT((SQUARE)*2".'),'3.

XEMECH = EZTOT(INT+1) - ETHERMAL

WRITE(19,222) NTIME, TFIN, PFIN/1.E6,

+ XSZF, XSZM, XSEFFM, XEEFFM, XEMECH

222 FORMAT(16,2(1X,F9.2) ,3(1X,F9.2),2(1X,E12.4))

RETURN

END

C--------------------------------------------------------------------

C PRINT OUTPUT AT THE CROSS-SECTION IN FDUSP.DAT

C--------------------------------------------------------------------

SUBROUTINE OUTUSP(SEFF,SR,ST,SZ,ERP2,ETP2,EZP2,NTOT)

COMMON/MATO/EF ,EM, CTEF ,CTEM

COMMON/MATi/EC ,E(201) ,VMlU(201) ,CTE(201) ,R(201) ,VF ,EZ

REAL ERPZ(201) ,ETP2(201) ,FZP2(201)

REAL SR(201), ST(201), SZ(201), SEFF(201)

DO I=1,NTOT+t

SS1 = SEFF(I)/1.E6

552 = SR(I)/l.E6
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SS3 = ST(I)/1.E6

SS4 = SZ(I)/1.E6

WRITE(18,88) R(I),SS1,SS2,SS3,SS4,ERP2(I),ETP2(I),EZP2(I)

END DO

88 FORMAT(2X,F7.4,2X,4(F9.2,1X),3(F9.5,1X))

RETURN

END

C ---------------------------------------------------------------------

C COMPUTE RUNTIME

C ---------------------------------------------------------------------

SUBROUTINE REALTIME(NRA,NTIME,XT1)

DELTA = SECNDS(XTI)/60.

WRITE(12,*) 'RUNTIME IS ',DELTA,' MIN FOR ', NRA,' NODES '

$ NTIME, 'TIME INCRS.'

PRINT *, 'RUNTIME IS ',DELTA,' MIN FOR ', NRA,' NODES ',

$ NTIME, 'TIME INCRS.'

RETURN

END
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APPENDIX B
ELASTIC SOiUTION OF TWO CONCENTRIC CYLINDERS

Stresses in the matrix and the fiber are given by [281;

arr, = A (1 - -b 2 + P r b r2 , crf = A (1 - -ba 2) - -Pr a-'b .
r 2 r,2 a 2 a2

b,2 b2

cr o , = A ( 1 + b 7 P , - -'bc o• = c ¢

r2 r=Ul

b2 b2

,,m = C, Ur¢ =C(1- -b )+ Pý b

a 2 a2

where;

A= S2b 2 (¾uI - U2 S-)+(a,, - af)T
t2SI -- ftS2 a$ 2

t '= - bt 2 -- (ul - U2  ) + (a,,, - af )T
- t 2

b12 1 1sl = (I - )- -)
a 2 Ef Em'

, b 2 01 + Vft) (1+ V

(12 Ef Em

b 2 2vf 2vm

a2 E, E,
b 2 ( + Vf b2 (I+ v.)t2a2 (l E fV 1+ -a 2) E ,

EE Em

u12 = !, - P, +) V P, 0 --V

E) Em

84



APPENDIX C
SAMPLE OUTPUT FILES
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